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Abstract. We studied electromagnetic beam reflection from layered structures that include materials with
negative refraction. Excitation of leaky surface waves leads to the formation of anomalous lateral shifts in
the reflected beams with single or double peak structures. The presence of reasonable losses within material
with negative refraction, besides significant influence on manifestation of the giant lateral shifts, can lead
to their total suppression and anomalously high absorption of the incident radiation. If, in addition to the
resonant excitation of leaky surface waves, radiation inflow exactly compensates their irreversible damping,
total absorption of the incoming radiation can be achieved for moderately wide beams.

PACS. 78.68.+m Optical properties of surfaces – 42.25.Bs Wave propagation, transmission and absorption
– 42.79.Gn Optical waveguides and couplers

1 Introduction

Experimental fabrication [1,2] of the microstructured ma-
terials with negative refraction called left-handed meta-
materials, whose peculiar optical properties have been
predicted many years ago [3], have recently attracted
extensive studies for the development of novel optical de-
vices (see e.g. [4,5]). In particular, attention has been
paid to the negative lateral beam shift (Goos-Häncken
effect in the opposite direction) of the reflected beam
that is obliquely incident upon the interface between the
conventional or right-handed (RH) and left-handed (LH)
media [6–8]. However, such interfaces have been shown
to support surface waves of both TE and TM polariza-
tions [9–11] for certain range of interface parameters. In
order to excite surface waves it is necessary to satisfy
phase-matching conditions that can only be achieved with
the use of properly chosen layered structures. In that case,
surface modes energy can leak out of the layered struc-
ture and thus lead to their reversible damping. This is in
contrast to the usual irreversible damping that is due to
energy losses within the layered structure itself. Namely,
the reversibility of the leaky surface wave (LSW) damp-
ing allows for the resonant energy pumping by the incident
beam.

Excitation of leaky waves is usually realized via atten-
uated or frustrated total reflection configurations in the
two well-known geometries: (i) prism-air-dielectric called
Otto configuration and (ii) prism-dielectric-air called
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Kretchman configuration. For the purpose of this paper
we confine ourselves to the Otto configuration and re-
place dielectric by material with negative refraction or
LH medium. In fact, similar problem has been studied
by Shadrivov et al. [12,13], who showed that lateral shift
can be dramatically enhanced by the resonant excitation
of the leaky surface waves at the interfaces that involve
LH materials. Such giant shifts are known to exist in the
case of layered structures made of RH materials [14–18].
However, the surface between two RH materials may sup-
port leaky surface waves of TM polarization only, with the
shift of the reflected beam in the forward direction. The
use of LH materials in layered structures opens up the
possibilities of giant shifts in both TM and TE polarized
beams in forward, as well as backward direction. This re-
quires more comprehensive analysis of lateral beam shifts
in the case of LH materials.

The role of absorption in LH materials also calls for
more extensive investigation having in mind that the
plane-wave theory reveals the possibility of total absorp-
tion of the incoming radiation [19–21]. For this to occur,
besides the resonant excitation of LSW, the energy of
the incoming radiation must exactly compensate all irre-
versible dissipative processes within the layered structure
materials.

From the point of view of possible applications, it is
worth noting that actual LH materials are composed of
unit cells of finite dimensions and thus heterogeneous. In
order to consider them as continuous media and introduce
effective dielectric permittivity and magnetic permeability
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that are simultaneously negative, it is necessary to observe
the homogenization limit, as discussed in reference [22].
In the present paper we assume that the wavelength of
the excited LSW is sufficiently greater then the size of
the composite material unit cell. The same holds for the
distance between the prism and LH material in the Otto
configuration.

Although the geometry of the problem and some start-
ing equations in the present paper are similar to those
of references [12,13], there are essential differences in the
treatment of the problem and the results. Our choice of
the phase shift, that is inversely proportional to the imagi-
nary part of the LSW wave number, is fully justified by the
analytical results presented, which are in excellent agree-
ment with numerical ones and allow for complete physi-
cal understanding of the physical processes involved. The
definition of lateral beam shift used in references [12,13]
as normalized first moment of the electric field of the re-
flected beam has entirely different physical meaning and
may have essentially different values than the phase shift
used in our paper. Here, we present the results for all pos-
sible cases of polarization and propagation directions and
predict that the giant lateral shifts may reveal single-peak
structures, i.e. double peak structures do not necessarily
appear. We show that the field structure (one or two peaks
for giant lateral shifts) significantly depends on the width
of the gap and the incident beam, as well as on the angle
of incidence. Finally, we present thorough investigation of
the role of losses on the reflected beam.

Thus, the aim of the present paper is twofold: (a) to
investigate comprehensively, both analytically and numer-
ically, the manifestation of giant lateral reflected beam
shifts in cases when absorption within materials with neg-
ative refraction can be neglected; (b) to study how the
finite beam width will influence the effect of anomalously
high absorption when reasonable losses are present. Obvi-
ously, absorption leads to high or even total suppression of
the giant lateral beam shifts. Moreover, we predict the ef-
fect of resonant absorption of moderately wide beams by
lossy materials with negative refraction that, under cer-
tain conditions, can be considered as total.

2 Formulation of the problem

We consider a Gaussian beam that has the beam width w
and that is obliquely incident from medium 1 (usually
a prism) upon a two-dimensional, two layered structure
with dielectric permittivities ε2, ε3 and magnetic perme-
abilities µ2, µ3 (see Fig. 1). The angle of incidence of the
beam θi is defined with respect to the normal to the in-
terface so that the wave vector component along the in-
terface is: kxi = k1 sin θi, where k1 = ω(ε1µ1)1/2/c is the
wave number in medium 1, ω is the frequency, c the speed
of light in vacuum, ε1, µ1 are dielectric permittivity and
magnetic permeability of the medium 1, respectively. If
the beam is TE or s-polarized it is convenient to work
with the electric field, while for TM or p-polarization one
will rather use magnetic field of the beam. In both cases,
the fields are oriented normally to the plane of incidence,

Fig. 1. Geometry of the problem.

i.e. along y-axis, and are consequently continuous across
the boundaries between media.

If we choose e.g. s-polarization, the electric field of
the incident beam at the interface z = 0 has the form
Ei(x, z = 0) = exp(−x2/2w2

x − ikxix), where wx =
w/ cos(θi), assuming the amplitude is 1. In the case of p-
polarization the same expression can be used for magnetic
field at z = 0. For the purpose of LSW excitation it is nec-
essary that the medium 1 is optically dense (ε1µ1 > ε2µ2)
and that incident angle θi is greater than the angle of total
internal reflection θtir = arcsin(ε2µ2/ε1µ1)1/2. Medium 2
represents a gap layer of width a, between medium 1 (usu-
ally a prism) and those two media are considered to be
non-dispersive. However, medium 3 has been assumed to
be a LH metamaterial with negative real parts of both ε3

and µ3 that are shown to be frequency dependent [2]:

ε3(ω) = 1 − ω2
p

ω2
; µ3(ω) = 1 − Fω2

ω2 − ω2
r

. (1)

Here, the parameters that have been chosen to fit exper-
imental data of reference [2] are given in reference [10] as
follows: ωp/ωr = 2.5; F = 0.56. The interface between
media 1 and 2 generates reflected beam and the beam
transmitted in the form of evanescent fields that can cou-
ple with evanescent field of surface waves supported by
the interface between media 2 and 3. The regions of exis-
tence and the properties of such surface waves have been
investigated in references [9–11]. In reference [9] the re-
flection in the plane-wave approximation has also been
calculated. The authors of reference [11] use theoretically
more general expressions of ε3 and µ3 than those pre-
sented in equation (1), for their general analysis of the
surface waves. In the present paper, however, we will use
expressions (1) that have been experimentally confirmed.
Let us mention that ε3 and µ3 are both negative in the
frequency range ωr < ω < ωr/(1 − F )1/2, and the con-
dition ωr < ω < ωr/(1 − F/2)1/2 is imposed for the ex-
istence of surface waves if ε2 = µ2 = 1, i.e. if the gap is
supposed to be the air. Then, for the parameter values
given above 1.75 < |ε3(ω)| < 3.5; 0 < |µ3(ω)| < 1. When
1.75 < |ε3(ω)| < 2.7 surface waves appear to be TM po-
larized with the energy transfer in the forward direction,
while for 2.7 < |ε3(ω)| < 3.5 they are TE polarized with
the energy transfer in the backward direction. Another
two possible types of surface waves, TE forward and TM
backward (see Ref. [10]), can exist if the gap is filled-up
with the dielectric material with ε2 > 3.5; µ2 = 1, or for
(suitably chosen) different values of the parameters ωp/ωr

and F .
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In what follows, throughout this paper we are going
to use dimensionless wave vectors (normalized to k1) and
lengths (normalized to 1/k1). At the same time ε2, ε3 are
normalized to ε1 and µ2, µ3 to µ1 without loss of gener-
ality. When kxi = sin θi is close to the real part of the
wave vector of the corresponding surface wave (polariton)
LSW is resonantly excited. Energy transfer along the in-
terface (up to the distances that are inversely proportional
to imaginary part of LSW wave number) can lead to a sub-
stantial enhancement of the lateral shift of the reflected
beam as compared to the well known Goos-Häncken effect.
Here, we are talking about shifts that are grater than (or
comparable to) the incident beam width, while the oppo-
site is true for Goos-Häncken shifts. Moreover, the shape of
the reflected beam can be far from Gaussian one and usu-
ally contains double peak structures. This, relatively sim-
ple picture, may hold also for the layered structures that
contain RH materials only, for TM or p-polarized beams.
The presence of LH metamaterials is distinguished by the
fact that both TE and TM polarizations can be used and
in both cases forward, as well as backward shifts can ap-
pear depending on the properties of the layered media,
i.e. on εn, µn (n = 1, 2, 3). For s- or p-polarized Gaussian
beam, the plane wave spectrum can be written as:

{Ei(kx); Hi(kx)} =
wx√
2π

e−(kx−kxi)
2w2

x/2. (2)

The reflected electric (magnetic) field is given by:

{Er(x); Hr(x)} =

+∞∫

−∞
R(kx){Ei(kx); Hi(kx)}eikxxdkx,

(3)
where R(kx) is the plane-wave reflection coefficient, which
for monochromatic waves, can be written in the following
form, suitable for LSW considerations:

R(kx) = R12
G − gA2 + i[F − g(1 + A1)]
G + gA2 − i[F + g(1 + A1)]

. (4)

Here:

G = (1 + α2) − (1 − α2)A1; A1 =
(1 − α2

1)
(1 + α2

1)
e−2κz2a;

F = (1 − α2)A2; A2 =
2α1

(1 + α2
1)

e−2κz2a;

R12 = (α1 − i)/(α1 + i), α1,2 = µ2κz1,3/µ1,3κz2 in
the case of s-polarization and α1,2 = ε2κz1,3/ε1,3κz2 in
the case of p-polarization, and κz1 =

√
1 − k2

x, κz2,3 =√
k2

x − ε2,3µ2,3. In fact, R12 represents the reflection co-
efficient from a single boundary between media 1 and 2,
G = 0 represents the dispersion equation of LSW, while
F describes wave damping due to leakage into the prism
region. Losses are represented by imaginary parts of dielec-
tric permittivity and magnetic permeability ε′′3 and µ′′

3 . It
is assumed that the prism and the gap consist of the RH
lossless materials. Then, all losses in the expression (4)
for the reflection coefficient appear in α2. Thus, for the

purpose of the present paper, it is convenient to introduce
the complex quantity α̃2 = α2 − ig, where:

(TE): g � α2[µ′′
3/µ3 + ε3µ3/2κ2

3(µ
′′
3/µ3 + ε′′3/ε3)], (5a)

(TM): g � α2[ε′′3/ε3 + ε3µ3/2κ2
3(µ

′′
3/µ3 + ε′′3/ε3)]. (5b)

Thus, expression (4) represents generalization to the case
of LH materials of the results of references [19–21]. Of
course, when absorption can be neglected (i.e. when g = 0)
|R|2 = 1 and the real and imaginary part of the numerator
in equation (4) cannot simultaneously vanish. However,
the phase shift in R can be dramatically enhanced when
the resonant excitation of LSW takes place (i.e. when
G = 0). In the presence of absorption, the approxima-
tion of plane-waves gives the possibility to achieve total
absorption, provided that the two conditions are simulta-
neously fulfilled:

G = gA2; F = g(1 + A1). (6)

The first of those two conditions gives a small correction
to the LSW dispersion relation G = 0, and, thus, requires
resonant excitation of LSW. However, the second condi-
tion requires exact compensation of the irreversible damp-
ing by radiation inflow making perfect connection of the
source and the sink.

3 Analytical considerations

It is clearly seen from equations (2, 3) that the main con-
tribution to the integral in equation (3) comes from the
region

(kx − kxi) ≤ 1
wx

. (7)

Provided there are no other singularities such as branch
points within this region, the essential contribution to the
reflected field comes from the poles and zeros of the reflec-
tion coefficient that can be written in the following form:

R(kx) = R12
kx − kn

kx − kp
, (8)

where kn = ksn + iβn, kp = ksp + iβp, and:

ksn = ksw − [(1 − α2)A1 + gA2]Q;
βn = −[(1 − α2)A2 − g(1 + A1)]Q; (9)

ksp = ksw − [(1 − α2)A1 − gA2]Q;
βp = [(1 − α2)A2 + g(1 + A1)]Q. (10)

Here, Q = (dα2/dkx)−1 taken at kx = ksw; the prop-
agation constants of the surface waves ksw have been
evaluated in reference [10] from the dispersion relations
1 + α2 = 0 that correspond to the infinitely wide gaps:

(TE): k2
sw = ε2µ2

Y (Y − X)
Y 2 − 1

;

(TM): k2
sw = ε2µ2

X (X − Y )
X2 − 1

, (11)
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where the effective parameters are given by: X = |ε3| /ε2

and Y = |µ3| /µ2. By using these two parameters the
derivatives in equation (7) can be written as:

(TE): Q = ksw
Y (1 − XY )

(Y 2 − 1)(Y − X)
;

(TM): Q = ksw
X(1 − XY )

(X2 − 1)(X − Y )
. (12)

As can be verified, the sign of Q is equal to the sign of
the corresponding x-component of the integrated energy
flux carried by LSW within the gap and LH metama-
terial: Px =

∫ ∞
0 Sxdz; where Sx is x-component of the

Poynting vector (S = c/8π[E×H]). This can be easily un-
derstood having in mind that expressions (11) represent
inverse derivatives of the dispersion function and, conse-
quently, are inversely proportional to the group velocity
of the LSW [11]. In fact:

Px = P0Q
−1 + O(A1); (13)

Here, P0 = c2E2
0κz2 sin θi/16πωµ1µ2 for TE mode, P0 =

c2H2
0κz2 sin θi/16πωε1ε2 for TM mode, E0, H0 are the

field amplitudes at z = d, and O(A1) stands for small
terms that are proportional to A1. Since P0 is essentially
positive, the sign of P corresponds to sign of Q. No-
tice that Px → 0 when Y → 1 for TE mode or when
X → 1 for TM mode, while Px → ∞ when XY → 1
for both polarizations. Notice that, when XY → 1 and
ksn = ksp → ksw, both κz2 and κz3 → 0, so that the
field(s) amplitude(s) become constant throughout the re-
gion 0 < z < ∞. Consequently, no LSW can be excited.
Moreover, X and Y cannot be close to 1, because oth-
erwise matching conditions with the prism for excitation
of LSW cannot be fulfilled (ksw = sin θi < 1). Therefore,
in the present paper we confine ourselves to the range of
parameters X and Y where each of them, as well as their
product XY, is not too close to 1. In contrast, surprisingly,
the authors of reference [13] have used the parameters:
X = 0.5, Y = 2 (i.e. XY = 1 and consequently infinite
Px) for the excitation of the TE forward surface waves
(see last paragraph on p. 487 of Ref. [13]).

For the configuration studied in the present paper ex-
citation of four different types of the LSW are possible. To
identify those we recall the requirement sin θtir < sin θi <
1 that, up to the small corrections that are proportional
to B, reveals:

(a) forward TE mode for Y (1 − Z) + Z/Y < X < 1/Y ;
(b) backward TE mode for Y (1−Z)+ Z/Y > X > 1/Y ;
(c) forward TM mode for X(1 − Z) + Z/X < Y < 1/X ;
(d) backward TM mode for X(1−Z)+Z/X > Y > 1/X .

Here Z = (ε2µ2)−1. For example, in Figure 2 we plot Y
versus X for the parameters Z = 10, (i.e. ε1 = 10; µ1 = 1);
F = 0.56; ωp/ωr = 2.5 (dashed curve) and ωp/ωr =

√
2

(dotted curve), assuming that the gap is the air.

Fig. 2. Existence regions (shaded areas) for the four possible
types of surface waves excitation. Dotted curve corresponds
to (ωr/ωp)2 = 0.5, dashed curve to (ωr/ωp)2 = 0.16 in for-
mula (1). For both curves: F = 0.56; Z = 10. Points A, B, C
and D used for numerical calculations shown in the following
figures.

Upon inserting (7) into (2), one can find the following
expression for the reflected electric (magnetic) field:

{Er(x); Hr(x)} = R12

[
1 + iσ

√
2π(kp − kn)(wx/2)

× exp(γ2) erfc(σγ)
]
exp(ikxix − x2/2w2

x) (14)

where γ =
√

2(wxβp/2 − x/2wx + iwx(kxi − ksp)/2),
σ = sgn(βp) = sgn(P ), and erfc(γ) is the complementary
error function. This represents generalization to the case
of materials with negative refraction of the results pre-
viously obtained by Shah and Tamir [16] for the case of
ordinary RH materials, when only TM forward LSW can
be excited. Besides the presence of the parameter σ in our
formula (12), the main difference from reference [16] arises
through our definitions of kn and kp (see Eqs. (8–11)).
This leads to clear physical understanding of anomalously
high lateral beam shifts in the absence of absorption (see
Sect. 4) , as well as to the understanding of the effect of to-
tal absorption of moderately wide beams in the presence of
reasonable losses within the material with negative refrac-
tion (see Sect. 5). Moreover, comparison with the results
obtained via direct numerical integration of expression (2)
using equation (3) shows not only quantitative, but also
excellent quantitative agreement.

4 Lateral shifts due to excitation of leaky
surface waves. Zero absorption

Within this section we neglect irreversible damping of the
leaky surface waves (LSW) i.e. εn, µn are considered to
be real quantities and the expression (4) becomes:

R(kx) = R12
G + iF

G − iF
. (15)
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In that case, G = 0 represents the condition for resonant
excitation of LSW which leads to the following expression
for a as a function of θi:

a =
1

2κ2
ln

(
1 − α2

1 + α2

1 − α2
1

1 + α2
1

)
kx=kxi

. (16)

From this simple expression resonant angle of incidence θi

can be determined for a given gap width a. Then, it can be
shown that there is a simple relation between the imag-
inary part of the LSW wave number βs and the lateral
shift of the reflected beam dr, defined as:

dr = − dΦr

dkx

∣∣∣∣
k=ks

= i
d

dkx
ln [R (kx)]

∣∣∣∣
k=ks

=
2
β

(17)

where Φr is the phase of the reflection coefficient, ks =
ksn = ksp and β = βp = −βn are determined from
equations (8, 9). In fact, these expressions are valid,
strictly speaking, in the plane-wave approximation but
produce quite reasonable results for moderately wide
beams. Shadrivov et al. [12,13] pointed out that in the case
of narrow beams with wide spectrum, it is more appropri-
ate to define the relative shift of the beams, by using the
normalized first moment of the electric (magnetic) field of
the reflected beam. Of course, exact numerical integration
is needed in that case, without assumptions made above
for the purpose of analytical considerations. However, our
analysis shows that in the case of double peak formations,
the use of equation (14) is fully justified. Really, the re-
flected electric (magnetic) field at z = 0 can be evaluated
analytically from equation (14)

{Er (x) ; Hr (x)} = R12

×
[
1 − σ

wx

dr
2
√

2πeγ2
erfc (σγ)

]
e
− x2

2w2
x

+ikxx
(18)

where: γ =
√

2(wx/dr − x/2wx + iwx(kxi − ks)/2), σ =
sgn(dr) = sgn(P ), and erfc(γ) is the complementary er-
ror function of the real argument when kxi = ks. Here,
dr is calculated using equation (17) with help of equa-
tions (10, 16) when g = 0. The results obtained via equa-
tion (18) are in excellent agreement with the following
numerical ones.

Direct numerical solutions of the integral (3) using ex-
pression (4) for the reflection coefficient, for four different
sets of parameters that corresponds to the possible exci-
tation of TE forward and TE backward, as well as to TM
forward and TM backward LSW have been performed and
the results are presented in Figures 3 and 4. In Figure 3,
we present density plots of the squares of the reflected
field amplitudes at z = 0 as a function of x/wx and the
normalized gap width a, for the angles of incidence given
by equations (9–11), i.e. kxi = sin θi = ksp � ksw, while
the width of the beam is wx = 20. Notice, that for the pa-
rameters used in our calculations, small corrections to ksw

given by equations (9, 10) do not change the results quali-
tatively. Figure 3a presents TE forward, Figure 3b TM for-
ward, Figure 3c TE backward and Figure 3d TM backward

Fig. 3. Squares of the reflected field profile as a functions of
gap width a for the following non-normalized parameters that
correspond to the points A, B, C and D in Figure 2: (a) ε3 =
−0.5, µ3 = −1.24, θi = 24.402◦; (b) µ3 = −0.203, ε3 = −2.34,
θi = 19.528◦; (c) ε3 = −3.1, µ3 = −0.628, θi = 30.417◦; (d)
µ3 = −2.73, ε3 = −0.7, θi = 31.86◦. Other parameters are:
ε1 = 10, ε2 = 1, µ1 = µ2 = 1, wi = 20. In cases (a) and
(c) Er field magnitudes for s-polarized beams are shown while
cases (b) and (d) depict Hr field magnitudes for p-polarized
beams.

Fig. 4. Squares of field profiles for backward s-polarized beam
as a function of incident angle for different gap widths and
beam widths. The parameters are: (a) w = 20, a = 0.33; (b)
w = 100, a = 0.435; (c) w = 20, a = 0.4; (d) w = 100,
a = 0.505. Other parameters are as in Figure 3c, corresponding
to point C in Figure 2.

LSW. Within the certain range of the gap widths a giant
lateral shifts due to resonant excitation of LSW are clearly
seen in all cases of interest. Outside this range, only small
shifts that correspond to the normal Goos-Häncken effect
can be observed. In that case, Gaussian structure of the
incident beam is preserved in the reflected beam. Inside
the range of the giant lateral beam shifts, formation of
single, as well as double peak structures, in the laterally
shifted reflected beam can be observed. When the dou-
ble peak structure exists, one peak is due to the mirror
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reflection of one part of the beam, while the other peak
corresponds to the resonant excitation of LSW. However,
when the single peak structure appears, the whole energy
of the incident beam is transferred to and shifted via LSW.

To get a complete insight in the phenomena, in Fig-
ure 4 we present density plots of the TM backward re-
flected squared field amplitude, as a function of x/wx and
the angle of incidence, for given values of a and different
beam widths wx. As one can see, double peak structures
do not always accompany giant lateral shifts (see Figs. 4a
and 4b). This follows also from Figure 3, but is much
more pronounced in Figure 4. For wider beams (wx = 100;
Figs. 3b and 3d) we see, as expected, that the shifts are
higher and more narrow than for narrow beams (wx = 20;
Figs. 4a and 4c).

5 Irreversible damping of leaky surface waves.
Total absorption

The aim of this section is to examine how the presence of
absorption will influence the lateral beam shift, as well as
whether total absorption can be achieved for finite beam
widths. For that purpose, we have numerically solved the
integral given by equation (3) using expression (4) for the
reflection coefficient. However, before presenting those nu-
merical results, in order to understand better the physical
picture of the processes involved, we will analyze what
follows from equation (12).

First of all we find from equations (8, 9)

kp − kn = 2 [g + i (1 − α2)] A2Q, (19)

Since α2 � −1 and g � 1, the imaginary part in (16)
is much grater than the real one. As to the argument γ
that enters in equation (14), it becomes the real quantity
if kxi = ksp. Of course, one can make such choice of the
angle of incidence and study reflected beam as a function
of the gap width a for given g and wx. However, we are
here interested in total absorption and will make slightly
different choice of the angle of incidence that follows from
equation (5). Namely, we choose kxi = ksn and recall that
the plane-wave approximation also requires βn = 0, i.e.:
A2 � g/2; for total absorption. In that case, it follows
from equation (12):

|Er (x) ; Hr (x)|2 =
∣∣∣
[
1 −

√
2πσ (1 − ig/2) gwx

× Q exp(γ2)erfc (σγ)
]
exp(−x2/2w2

x)
∣∣∣2, (20)

where γ =
√

2σ [gwxQ(1 − ig/2)− x/2wx]. If,

gwxQ � 1, (21)

we can neglect γ dependence on x for all reasonable val-
ues of x, i.e. when |x| � 2gw2

xQ. Then, by using asymp-
totic expansion: eγ2

erfc(γ) ∼ 1/
√

πγ one gets zero on the
right-hand side of equation (20) and thus, total absorp-
tion. Of course, we are aware of approximations that have

Fig. 5. Absorption as a function of incident angle and gap
width a (a, c, e). Reflected field profiles as a function of gap
width a (b, d, f). Parameter g takes values 0.001 (a, b), 0.01 (c,
d), and 0.1 (e, f). Incident angles for (b, d, and f) refer to the
maximum absorption for respective losses. Other parameters
are as in Figure 3c, corresponding to point C in Figure 2.

been made and consequently, that exactly 100% absorp-
tion cannot be achieved for finite beam widths. However,
here we talk about total absorption when reflection be-
comes negligibly small. In fact, recalling that the ampli-
tude of the incident field is assumed to be 1, one can cal-
culate z-component of the integrated reflected power flux
Pzr =

∫ +∞
−∞ Szdx, to obtain:

Pzr = −c2wx cos θi

16
√

πωµ1

(
g − 2A2

g + 2A2

)2

+ O
(
(g + 2A2)−3w−3

x Q−3
)
. (22)

This confirms that the conditions for vanishing reflection
coefficient (g � 2A2) that follow from plane-wave approx-
imation, is justified with high accuracy when the condi-
tion (21) is fulfilled.

Absorption is calculated as A = 1 − |R|2 as a func-
tion of θi and a for given g. The results are presented in
Figures 5a, 5c, and 5e for g = 0.001; 0.01 and 0.1 respec-
tively, as pertinent samples for the parameters that allow
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for the excitation of s-polarized backward LSW. Our anal-
ysis shows that in all other cases of interest (s-backward
and forward, p-forward) the similar results are obtained.
As one can see, the resonant angle of incidence increases,
while the resonant gap width a decreases for higher values
of g, as expected from equation (6). Absorption peak is ex-
tremely narrow for small values of g and becomes wider
for greater ones. However, total absorption can always be
achieved (i.e. for any g > 0), when the conditions (6) are
satisfied.

In order to compare the results obtained within the
plane-wave approximation with those obtained for finite
beam widths, we present in Figures 5b, 5d and 5f the nu-
merical results of integration in equation (3) using expres-
sion (4) for the reflection coefficient. We present density
plots of the squares of the reflected field profiles at z = 0
as a function of x/wx and the normalized gap width a,
for the angles of incidence given by equations (9–11), i.e.
kxi = sin θi = ksn, while the width of the beam is wx = 20.
The values of ksn have been calculated for each particular
value of g, i.e. g = 0.001; 0.01 and 0.1 that have been used
in Figures 5b, 5d and 5f respectively. As can be seen in Fig-
ure 5b, for very small losses g = 0.001 the picture is very
similar to Figure 3d. In other words, giant lateral beam
shift still appears. However, for moderate losses (g = 0.01)
Figure 5d shows that anomalous lateral beam shift disap-
pears. High absorption can be achieved for certain value of
the gap width. Finally, for relatively high losses (g = 0.1),
in Figure 4f one can see the absorption resonance shifted
towards smaller gap widths as expected, while maximum
absorption achieves �100%.

6 Conclusion

We have investigated the scattering of an obliquely in-
cident Gaussian electromagnetic beams from the layered
structures that contain LH metamaterials. When absorp-
tion can be neglected, resonant excitation of leaky surface
waves can lead to giant lateral beam shifts in the reflected
beams. We have presented comprehensive analytical, as
well as numerical analysis of the phenomena in the case
of Otto configuration: prism-air-LH metamaterial. Exci-
tation of all possible TE and TM, both backward or for-
ward, leaky surface waves leads to the formation of giant
lateral shifts in the reflected beams with single or dou-
ble peak structures depending on angle of incidence and
width of the air gap. The presence of reasonable losses
within LH metamaterial, besides significant influence on
manifestation of the giant lateral shifts, can lead to their

total suppression and anomalously high absorption of the
incident radiation. If, in addition to the resonant excita-
tion of LSW, radiation inflow exactly compensates their
irreversible damping, nearly total absorption of the incom-
ing radiation can be achieved. Such phenomena can occur
for moderately wide incident beams and reasonable losses
within LH metamaterial itself.
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